Documentation of Tools for Noise Removal from
Pyrosequenced Amplicons (AmpliconNoiseV1.22)

Installation:

The programs have been tested on MacOs X and Linux - Windows is not
supported. A cluster is not necessary but reasonable size data sets will only
run on a cluster or good server. A version of Message Passing Interface
(MPI) is necessary to install the programs. Open MPI is a good choice:

http://www.open-mpi.org/

In addition the chimera checker Perseus requires that both mafft:

http://mafft.cbrc.jp/alignment/software/

and the Gnu Science Library are installed:

http://www.gnu.org/software/gsl/

To install first unzip the programs:

unzip AmpliconNoiseV1.22.zip

move into the top directory and type:

make clean

make

this will compile the programs. Any errors here may require changing the
default C (cc) and C-MPI compilers (mpicc) in the individual makefiles
associated with the executables.

make install

will place the executables in the bin directories. This and the Scripts
directory need to be added to your path. If you unzip
AmpliconNoiseV1.22.zip in your home directory /home/whoeverlam/ then

this command should be added to your .bashrc or .profile or equivalent:

PATH=/home/whoeverlam/AmpliconNoiseV1.22 /bin:
/home/whoeverlam/AmpliconNoiseV1.22 /Scripts:$PATH

export PATH

You should also set environment variables to specify the location of look up
tables used by the programs. These define the noise distributions. The

following commands ensure that the file LookUp_E123.dat is always used
for PyroDist and PyroNoise and Tran.dat by SeqDist and SeqNoise. Having
set these the programs can be run anywhere otherwise they can only be
run from inside the bin directory:

PYRO_LOOKUP_FILE=/home/whoeverlam/AmpliconNoiseV1.22 /Data/Loo
kUp_E123.dat
SEQ_LOOKUP_FILE=/home/whoeverlam/AmpliconNoiseV1.22 /Data/Tran.
dat

export PYRO_LOOKUP_FILE

export SEQ_LOOKUP_FILE

Programs

FCluster:

-in string distance input file name
-out string output file stub
Options:

T resolution

-a average linkage

-w use weights

-i read identifiers

-S scale dist.

This performs a simple hierarchical clustering. It reads a distance file in
text format (-in).

The first line in the text file gives the number of entities to be clustered N.
This is then optionally followed by N ids if the (-i) flag is set as separate
lines. Otherwise the N(N-1)/2 pairwise distances follow as individual lines.
The distances d;j are specified in orderi=1...N, j = 1..i.

The program performs complete linkage clustering as default but average
linkage can be specified by the (-a) flag. Average linkage accounting for
weights is possible with (-a -w) the weights are then take from the ids
which must have format

Namel_Weight1l

NameN_WeightN

The program produces three output files stub.list, stub.otu, stub.tree when
stub is specified by (-out):

stub.list has format (similar to Dotur)

d NClusters Cluster1l .. ClusterN

where d is the distance at which clusters formed. N is the number of
clusters at this cutoff and then each cluster is specified as a comma
separated list of entries either indexed 0 to N -1 or by ids if the (-i) flag is
specified.

stub.otu simply gives the cluster sizes in the same format. Clusters are
outputted at seperations of 0.01 by default but this can be change by (-r)
flag.

stub.tree is the hierarchical in newick tree format

Finally the distances can be scaled by their maximum using the (-s) flag.
Examples:

To perform complete linkage hierarchical clustering:

FCluster -in test.fdist -out test M

Or to use average linkage with weights and ids in output:

FCluster -i -a -w -in test.ndist -out test_A

(this requires distance file with ids)

FClusterM:

-in string distance input file name
-out string output file stub
Options:

T resolution

-a average linkage

-w use weights

-i read identifiers

-S scale dist.

This performs a simple hierarchical clustering. It reads a distance file in
text format (-in) that has a full distance matrix. The first line in the text file
gives the number of entities to be clustered N. This is then optionally
followed by N ids if the (-i) flag is set as separate lines. Otherwise the N*N
pairwise distances follow as individual lines. The distances d;jj are specified
in orderi=1...N, j = 1..N. For clustering this matrix is converted into its
symmetric equivalent d_ij = 0.5*(d_ij + d_ji). This is suitable for clustering
the output of SeqDistM.

FastaUnique - dereplicates fasta file
-in string input file name
Options:

This program simply dereplicates a fasta file of sequences. Sequences of
different length are only compared up to the smaller length and if identical
up to that smaller length are judged the same sequence. Dereplicated
sequences with ids that are a combination of the founding sequence id and
the number of identical sequences found i.e.

>founderID_weight

The mapping of sequences to the uniques is given by a .map file generated
with the name fastaname.map where fastaname is obtained by parsing .fa
of the original file name. This has a line for each unique sequence in
format:

Originallldx, Newldx, ParentID, I: Idx_1,...1dx_I:ID_1,...,ID_I
where I is the number of sequences mapping to the unique.
Example:

FastaUnique -in Test.fa > Test_U.fa

NDist - pairwise Needleman-Wunsch sequence distance matrix from a fasta
file

-in string fata file name

Options:

-i output identifiers

This program generates a distance matrix from a fasta file of the format
required by FCluster. It uses a simple implementation of the exact
Needleman-Wunsch algorithm to perform pairwise alignments using a
fixed gap penalty of 1.5. Distances are then calculated according to the
‘QuickDist’ algorithm basically counting mismatched nucleotides as a
distance of one and with a cost of one for a gap regardless of length and
then normalizing by number of comparisons (Huse et al. Genome Biology
2007). Output is to standard out.

The only option (-i) is to output identifiers suitable for running FCluster
with -i.

This is an MPI program allowing the calculation of distances to spread
across multiple cores and/or nodes.

Example:

mpirun -np 32 NDist -in Test.fa > Test.ndist

Perseus - slays monsters

-sin string seq file name

Options:
-tin string reference sequence file
-a output alignments
-d use imbalance
-rin string lookup file name

The Perseus algorithm given an input fasta file (-sin) takes each sequence
in turn and searches for the closest chimeric match using the other
sequences as possible parents. It finds the optimum parents and
breakpoints. It only searches for parents amongst species of equal or
greater abundance where abundance is obtained from the fasta ids:

>ID_weight

Never run multiple copies of Perseus in the same directory! The (-a) flag
outputs all the chimeric alignments and is useful for verifying if sequence
truly is chimeric. The (-d) flag uses a slightly different algorithm including
a penalty for imbalance on branches of the tree formed by the chimera and
parents which may give better results in some instances. Perseus uses a
nucleotide transition file and (-rin) allows this file to be set otherwise it
defaults to the SEQ_LOOKUP_FILE variable and if this is not set the header
variable LOOKUP_FILE which is set to “../Data/Tran.dat”.

We recommend removing degenerate primers before running Perseus.
It produces a lot of info but ... the critical portion are the x=12th, y=13th,

and z=14th tokens. If x < 0.15 and y >= 0.0 and z is larger than about 15
then this is a chimera.

The (-tin) option allows sequences other than the queries to be used as
references. This can be used to split a file for running across threads or on
a cluster (see example below).

Example usage:

sed ‘s/"ATTAGATACCC\w{1}GGTAG//’ C005_s60_c01_T220_s30_c08_cd.fa >
C005_s60_c01_T220_s30_c08_P.fa

Perseus -sin C005_s60_c01_T220_s30 c08 _P.fa >
C005_s60_c01_T220_s30_c08_P.per

To split a fasta file into four sections each in its own directory and then run
Perseus in the background on each separately before recombining the
output:

Split.pl Uneven1_s25_P.fa 4

cd Split0

Perseus -sin Split0.fa -tin ../Uneven1_s25_P.fa > Split0.per&

cd ../Splitl
Perseus -sin Splitl.fa -tin ../Uneven1_s25_P.fa > Splitl.per&

cd ../Split2
Perseus -sin Split2.fa -tin ../Uneven1_s25_P.fa > Split2.per&

cd ../Split3
Perseus -sin Split3.fa -tin ../Uneven1_s25_P.fa > Split3.per&

../Scripts/Join.pl Split*/*per > Uneven1_s25_P.per
To classify sequences use Class.pl with suggested parameters for V5:

Class.pl C005_s60_c01_T220_s30_c08_P.per -6.6925 0.5652 >
C005_s60_c01.T220_s30 _c08_P.class

generates a file:

seqname x y zZ probabilityofbeingchimeric

We can split up the original fasta file at 50% probability of being chimeric:
FilterGoodClass.pl C005_s60_c01_T220_s30_c08_P.fa
C005_s60_c01.T220_s30 _c08_P.class 0.5 2>
C005_s60_c01_T220_s30_c08_Good.fa > C005_s60_c01_T220_s30_c08_Chi.fa

PyroDist - pairwise distance matrix from flowgrams

-in string flow file name

-out stub out file stub
Options:

-ni no index in dat file
-rin string lookup file name

This program calculates a distance matrix between flowgrams. Input (-in)
is to a .dat file containing flowgrams in a simple format. The first line has
the number of flowgrams followed by the number of flows: N M. Each of the
N flowgram entries has the format: id length1 flow1 flow2 ... flowM where
id is just an identifier, length is the number of 'clean’ flows, followed by all
M flows (although only length will ever be used).

The distances are calculated according to the algorithm in Quince et al.
2009 except that alignment of flowgrams no longer occurs. This requires a
look up table for the intensity distributions about the homopolymer length.
By default this is read in from a file set in the header file by the constant
LOOKUP_FILE which is set to “../Data/LookUp_E123.dat” a well configured
distrubution for 454 GSFLX implementation. Consequently the program
can only be run from the bin directory to maintain this relative path.

However, to allow the program to run anywhere the environment variable
PYRO_LOOKUP FILE can be set as described in the installation instructions
or the path to a lookup file can be passed with the (-rin) flag.

The optional flag (-ni) is necessary if the flowgram file contains no ids.
Output is to a distance matrix in flat format of name stub.fdist where stub is
set by the (-out) flag. Status information is sent to stdout this can be safely

ignored if the program runs correctly.

This is an MPI program allowing the calculation of distances to spread
across multiple cores and/or nodes.

Example:
mpirun -np 32 PyroDist -in Test.fa -out Test > Test.fdout

generates distance matrix Test.fdist

PyroNoise - clusters flowgrams without alignments

-din string flow file name

-out string cluster input file name
-lin string list file

Options:

-v verbose

-c double initial cut-off

-ni no index in dat files

-s double precision

-rin file lookup file name

This program uses an EM algorithm to construct de-noised sequences by
clustering flowgrams as described in Quince et al. 2009 but without
alignments. It takes as input (-din) a flowgram file of the format described
above and an initial hierarchical clustering (-lin) generated by running
FCluster on the output of PyroDist. Output files are generated with the stub
specified by flag (-out).

The cut-off for the initial clustering is specified by (-c) generally this should
be quite small 0.01 is a good value for most data sets. The paramter (-s)
controls the cluster size. The larger this is the tighter the clusters - 60.0 is a
reasonable value here but smaller may remove more pyrosequencing
noise. If these parameters are not set they default to these values.

The parameter (-rin) allows a look up file to be specified otherwise the
program uses the environment variable PYRO_LOOKUP_FILE if that is not
set it defaults to the global variable LOOKUP_FILE found in PyroNoise.h
currently “../Data/LookUp_E123.dat”. This will work provided the

executable is run from the bin directory to maintain this relative path to
the files in ../Data.

The option (-v) outputs extra debug information to standard out.

Information on cluster convergence is output to standard out and after
running the program produces a number of files:

1) stub_cd.fa: a fasta file of de-noised sequences. The ids are formed as
“>stub_index_weight” where weight are the number of reads
mapping to that sequence, and index is just an arbitrary cluster
number.

2) stub_cd.qual: qualities for the denoised sequences see Quince et al.
(unpublished).

3) stub.mapping: contains a line for each de-noised sequence giving the
read that characterizes that sequence followed by a tab separated
list of flowgram reads (specified by their ids read from dat file) that
map to it.

4) directory stub: contains a fasta file for each de-noised sequence,
i_index.fa, of reads that map to it.

This is an MPI program allowing the calculation of distances to spread
across multiple cores and/or nodes.

Example:

mpirun -np 32 PyroNoise -din Test.dat -out Test_s60_c01 -lin Test_X.list -s
60.0 -c 0.01 > Test_s60_c01.pout

PyroNoiseM
This version of PyroNoise has the exact same usage as above but stores

flowgram distances in memory. It is useful for Titanium data where the
calculation of these distances may be the limiting step.

SeqDist - pairwise distance matrix from a fasta file

-in string fasta file name
Options:

-i output identifiers

-rin string lookup file name

This program generates a distance matrix of the format required by
FCluster from a fasta file. It uses a an implementation of the exact
Needleman-Wunsch algorithm to perform pairwise alignments. Distances
account for nucleotide transition probabilities as a result of PCR errors.
There is a different cost for homopolymer (4.0) and normal gaps (15.0).
The probabilities, actually -log of, are read from a look up table. By default
this is from a file set in the header file by the constant LOOKUP_FILE which
is set to “../Data/Tran.dat” configured for a standard polymerase.

Consequently the program can only be run from the bin directory to
maintain this relative path. However, to allow the program to run
anywhere the environment variable SEQ_LOOKUP_FILE can be set as
described in the installation instructions or the path to a lookup file can be
passed with the (-rin) flag.

The option (-i) is to output identifiers suitable for running FCluster with -i.

This is an MPI program allowing the calculation of distances to spread
across multiple cores and/or nodes.

Example:

mpirun -np 32 SeqDist -in Test.fa > Test.seqdist

SeqDistM

This version of SeqNoise has the exact same usage as above but generates
an asymmetric distance matrix NXN distance matrix that is appropriate for

SeqNoiseM.

SeqNoise - clusters sequences

-in string fasta sequence file name

-din string sequence distances file name
-out string cluster input file name

-lin string list file

Options:

-min mapping file
-V verbose

-C double initial cut-off
-S double precision
-rin string lookup file name

This program uses an EM algorithm to remove PCR noise by clustering
sequences as described in Quince et al. (unpublished). The same distance
metric as described in SeqDist is used. It takes as input (-in) a fasta file
(with frequencies defined in ids as >id_weight), (-din) a flat matrix of
sequence distances generated by SeqDist and an initial hierarchical
clustering (-lin) generated by running FCluster on the output of SeqDist.
Output files are generated with the stub specified by flag (-out).

The cut-off for the initial clustering is specified by (-c) generally this should
be quite large 0.08 is a good value for most data sets. The paramter (-s)
controls the cluster size. The larger this is the tighter the clusters - 30.0 is a
reasonable value here but smaller may remove more noise and larger
allow high resolutions OTUs. If these parameters are not set they default to
these values.

The parameter (-rin) allows a look up file to be specified otherwise the
program uses the environment variable SEQ_LOOKUP_FILE if that is not set
it defaults to the global variable LOOKUP_FILE found in SeqNoise.h
currently “../Data/Tran.dat”. This will work provided the executable is run
from the bin directory to maintain this relative path to the files in ../Data.

The option (-v) outputs extra debug information to standard out.

The option (-min) allows a mapping file from a previous PyroDist step to be
input. If used the program will use this information to map denoised
sequences back to the original flowgram ids.

Information on cluster convergence is output to standard out and after
running the program produces a number of files:

1) stub_cd.fa: a fasta file of de-noised sequences. The ids are formed as
“>stub_index_weight” where weight are the number of sequences
mapping to that sequence, and index is just an arbitrary cluster
number.

2) stub.mapping: contains a line for each de-noised sequence giving the
input sequence defining the denoised cluster followed by a tab
separated list of input sequences that map to that sequence.

3) directory stub: contains a fasta file for each de-noised sequence,
i_index.fa, of sequences that map to it.

4) Optional on (-min) if a mapping file is input then a file
stub_cd.mapping containing a line for each de-noised sequence
giving the id followed by a tab separated list of original reads that
map to it.

This is an MPI program allowing the calculation of distances to spread
across multiple cores and/or nodes.

Example:

mpirun -np 32 SeqNoise -in Test_s60_c01_T220.fa -din
Test_s60_c01_T220.seqdist -lin Test_s60_c01_T220_S.list -out
Test_s60_c01_T220_s30_c08 -s 30.0 -¢ 0.08 -min Test_s60_cO01.mapping >
Test_s60_c01_T220.snout

SeqNoiseM

This version of SeqNoise has the exact same usage as above but uses a
slightly different algorithm for the centroid construction which will prefer
longer sequences for centroid clusters. It may be preferred for Titanium
data if read lengths are very uneven (std dev > 100) it requires input from
SeqDistM.

SplitClusterEven
-din string dat filename
-min string map filename

-tin string tree filename
-s splitsize
-m min size

This program splits up dat files (-din) using a tree generated on unique
sequences (-tin) input as a .tree file. The mapping of unique sequences to
reads in the dat file is specified by a .map file (-min). The tree is the split in
such a way as to maintain a maximum (-s) and minimum (-m) cluster size
(measured on unique reads). The parameters -s 2500 and -m 250 will
likely produce dat files of a good size although you should play around with
these. The dat files are placed in directories labeled C000, ..,COON+ where
N is the number of clusters and the + simply indicates that this will be an
aggregation of all small clusters.

Scripts:
Some useful Perl scripts are also provided in the Scripts directory:
FlowsFA.pl

This extracts flowgrams from the text translation of a .sff.txt. It takes the
primer as a first argument and an output stub as the second. It reads from
std in. It should be used for GSFLX reads. For example

FlowsFA.pl ATTAGATACCC[ACTG]GGTAG Artificial GSFLX <
Artificial GSFLX.sff.txt

Will generate the filtered .dat flowgram file ArtificialGSFLX.dat and a fasta
file of the corresponding sequences Artificial GSFLX.fa. Filtering requires
that a minimum sequence length of 204 (changed by altering variable
$minLength) including key and primer is achieved before the first noisy
signal (0.5-0.7 or no signal across all four bases). Flowgrams are then
truncated at this point. If keys are used simply pass the entire key - linker -
primer sequence to this script or use SplitKeys.pl described below.

FlowsFA360.pl

This extracts flowgrams from the text translation of a .sff.txt. It takes the
primer as a first argument and an output stub as the second. It reads from
std in. It should be used for GSFLX reads. For example

FlowsFA360.pl ATTAGATACCC[ACTG]GGTAG Artificial GSFLX <
Artificial GSFLX.sff.txt

Will generate the filtered .dat flowgram file ArtificialGSFLX.dat and a fasta
file of the corresponding sequences Artificial GSFLX.fa. Filtering requires
that a minimum flowgram length of 360 including key and primer is
achieved before the first noisy signal (0.5-0.7 or no signal across all four

bases). All flowgrams are then truncated at 360. If keys are used simply
pass the entire key - linker -primer sequence to this script or use
SplitKeys.pl described below.

FlowsMinMax.pl

This extracts flowgrams from the text translation of a .sff.txt. It takes the
primer as a first argument and an output stub as the second. It reads from
stdin. It should be used for Titanium reads. For example

FlowsMinMax.pl ACACACGTCGACTCCTACGGGAGGCAGCAG TitaniumV3 <
TitaniumV3.sff.txt

Will generate the filtered .dat flowgram file TitaniumV3.dat and a fasta file
of the corresponding sequences TitaniumV3.fa for a key ACACACGTCG and
primer ACTCCTACGGGAGGCAGCAG. Filtering requires that a minimum
flowgram length of 360 including key and primer is achieved before the
first noisy signal (0.5-0.7 or no signal across all four bases). All flowgrams
are then truncated at 720. If keys are used simply pass the entire key -
linker -primer sequence to this script in upper case or use SplitKeys.pl
described below.

CountFasta.pl

Gives total read number mapping to a fasta file with weighted ids.
CountFasta.pl < Test_s60_c01_cd.fa

Truncate.pl

Truncates sequences in a fasta file e.g.

Truncate.pl 220 < Test_s60_c01_cd.fa > Test_s60_c01_T220.fa
SplitKeys.pl

Separates out an sff file read from stdin according to barcode sequences.
Requires a file Tags.csv with format:

SampleName1l, Barcodel
SampleNameN, BarcodeN

The primer is the first argument of the script. The second is the Tags.csv
file. This script generates .raw files that then have to be filtered and
reformatted using Clean360.pl. A shell script Clean.sh shows how to do this
for multiple raw data files. Reads that do not match to any tag are output to
stderr. Any linkers must be included in the barcodes.

./SplitKeys.pl TGCTGCCTCCCGTAGGAGT Tags.csv < FVONWLFO01.sff.txt 2>
Err.fa

SplitKeysFlower.pl

Separates out a flower file generated generated by Ketil Malde’s program
(http://blog.malde.org/index.php/2009/07 /03 /a-set-of-tools-for-
working-with-454-sequences/) read from stdin according to barcode
sequences. Requires a file Tags.csv with format:

SampleName1l, Barcodel
SampleNameN, BarcodeN

The primer is the first argument of the script. The second is the Tags.csv
file. This script generates .raw files that then have to be filtered and
reformatted using Clean360.pl. A shell script Clean.sh shows how to do this
for multiple raw data files. Reads that do not match to any tag are output to
stderr. Any linkers must be included in the barcodes.

./SplitKeysFlower.pl TGCTGCCTCCCGTAGGAGT Tags.csv <
FVONWLFO01.flower.txt 2> Err.fa

Qiime_Typical.pl

Generates OTU consensus sequences with format suitable for Qiime. Takes
fractional sequence difference for OTU construction as the first argument.
Fasta file of denoised sequences for the second and list file from ndist for
the third. See tutorial for information. Example:

./Qiime_Typical.pl 0.03 All_Good.fa All_Good.list > All_Good_C03_Q.fa
Qiime_OTU.pl

Generates Qiime OTU tables. Takes fractional sequence difference for OTU
construction as the first argument. RDP taxonomic classifications as second
and sample suffix for third. Generate classifications from using Qiime
(assign_taxonomy.py -i All_Good_C03_Q.fa) Example:

./Qiime_OTU.pl 0.03
rdp_assigned_taxonomy/All_Good_C03_Q_tax_assignments.txt TS <
All_Good.list > All_Good_C03.qgiime

The file All_Good_C03.giime can now be used directly in Qiime as an OTU
table.

Example Analyses
Test

The directory test contains a shell script Run.sh which will run through the
entire de-noising process for a single dat file. A smallish file, 2094 reads,
which will process on a good MacBook in ten or twenty minutes C005.dat is
included. This should be run as follows:

./Run.sh C005.dat

If this works correctly a de-noised file C005_s60_c01_T220_s30_c08_cd.fa
with just 18 sequences will be generated. The file
C005_s60_c01_T220_s30_c08_cd.mapping will map these back to the
original reads. Other files reflecting the intermediate steps are also
generated but in general they can be ignored. The list file giving complete
linkage OTUs for these sequences is also produced
C005_s60_c01_T220_s30_c08.list.

Larger dat files could be processed with this script on a cluster simply by
changing the value nodes to a larger number say 32 or whatever is
appropriate. To explain the script in detail:

#!/bin/bash

nodes=2 #no. of cluster nodes to use

(change this to a larger value if running on a cluster simply gives the
number of nodes for the MPI programs)

file=$1; #first argument name of dat file
(any dat file with ids can be used)

echo $file
stub=${file%.dat}

echo "Calculating .fdist file"

mpirun -np $nodes PyroDist -in $file -out ${stub} > ${stub}.fout
(first we calculate flowgram distances)

echo "Clustering .fdist file"

FCluster -in ${stub}.fdist -out ${stub}_X > ${stub}.fout

(then hierarchical cluster with complete linkage to provide input file for
PyroNoise)

rm ${stub}.fdist

rm ${stub}_X.otu ${stub} _X.tree
(remove some intermediate files)
echo "Running PyroNoise"

mpirun -np $nodes PyroNoiseM-din ${file} -out ${stub}_s60_c01 -lin
${stub}_X.list -s 60.0 -c 0.01 > ${stub}_s60_c01.pout

(this performs the flowgram clustering according to the EM algorithm to
remove pyrosequencing noise)

Truncate.pl 220 < ${stub}_s60_c01_cd.fa > ${stub}_s60_c01_T220.fa

(The end of reads are often noisy so we truncate to 220 base pairs. If
degenerate primers are used they should perhaps be removed at this point
although that this optional).

echo "Running SeqDist"
mpirun -np $nodes SeqDist -in ${stub}_s60_c01_T220.fa >
${stub}_s60_c01_T220.seqdist

(Now we calculate the PCR error corrected distances between sequences)

FCluster -in ${stub}_s60_c01_T220.seqdist -out ${stub}_s60_c01_T220_S >
${stub}_s60_c01_T220.fcout

(and complete linkage cluster to provide input to SeqNoise)

echo "Running SeqNoise"

mpirun -np $nodes SeqNoise -in ${stub}_s60_c01_T220.fa -din
${stub}_s60_c01_T220.seqdist -lin ${stub}_s60_c01_T220_S.list -out
${stub}_s60_c01_T220_s30_c08 -s 30.0 -c 0.08 -min
${stub}_s60_c01.mapping > ${stub}_s60_c01_T220.snout

rm ${stub}_s60_c01_T220_S.otu ${stub}_s60_c01_T220_S.tree
${stub}_s60_c01_T220.seqdist

(the sequence clustering algorithm that removes PCR errors)

echo "Clustering OTUs"
mpirun -np $nodes NDist -i -in ${stub}_s60_c01_T220_s30_c08_cd.fa >
${stub}_s60_c01_T220_s30_c08.ndist

FCluster -i -in ${stub}_s60_c01_T220_s30_c08.ndist -out
${stub}_s60_c01_T220_s30_c08 > ${stub}_s60_c01_T220_s30_c08.fcout
(Finally we build OTUs from the de-noised sequences)

rm ${stub}_s60_c01_T220_s30_c08.ndist

echo "Removing intermediate files"

rm *out
exit 0

TestFull

The directory TestFull contains a shell script that illustrates the de-noising
process for a larger sample that needs to be split to allow de-noising. This
should only be run on a cluster or good server. It is assumed that a single
sample without barcodes is used. The script takes an .sff file as an
argument but in case sffinfo (a 454 program) is absent we have provided
Artificial GSFLX.sff.txt an sff that has already been converted into text.

The script should be run in general as:
./Run.sh My.sff primer

and for test purposes:

./Run.sh Artificial GSFLX.sff
#!/bin/bash

defaultPrimer="ATTAGATACCC\w{1}GGTAG" #default primer
nodes=8 #no. of cluster nodes to use

sfffile=$1; #first argument name of sff file (necessary)
primer=${2:-$defaultPrimer} #second argument primer as a Perl regular
expression

(the second argument should be your primer else it defaults to our 787f)
stub=${sfffile%.sff};
echo $stub $sfffile $primer

first generate sff text file if necessary
if [! -f ${sfffile}.txt]; then

echo "Generating .sff.txt file"

sffinfo $sfffile > ${sfffile}.txt
fi

(generates text translation of sff file if necessary)

#generate flowgram and fasta files
if [! -f ${stub}.dat]; then

echo "Generating .dat file"

FlowsFA360.pl $primer $stub < ${sfffile}.txt
fi

(extracts filtered dat and sequence files)
#get unique sequences
if [! -f ${stub}_U.fa]; then
echo "Getting unique sequences”
FastaUnique -in ${stub}.fa > ${stub}_U.fa
fi

(generates a file of unique sequences)

#use NDist to get sequence distances
if [! -f ${stub}_U_Llist]; then

echo "Calculating sequence distances”

mpirun -np $nodes NDist -i -in ${stub}_U.fa > ${stub}_U_Lndist
fi

#use NDist to get sequence distances
if [! -f ${stub}_U_Llist]; then
echo "Cluster sequences..”;
#cluster sequences using average linkage and sequence weights
FCluster -a -w -in ${stub}_U_Lndist -out ${stub}_U_I > ${stub}_U_lL.fcout
fi

rm ${stub}_U_Lndist

(These two steps use the unique sequences to generate an average linkage
tree based on sequence distance...)

SplitClusterEven -din ${stub}.dat -min ${stub}.map -tin ${stub}_U_Ltree -s
5000 -m 1000 > ${stub}_split.stats

(that is then used to split up the .dat file)

echo "Calculating .fdist files"
for cin C*
do

if [-d $c]; then

mpirun -np $nodes PyroDist -in ${c}/${c}.dat -out ${c}/${c} >

${c}/${c}.fout

fi
done

(Now we can start denoising each dat file separately beginning by
calculating the flowgram distances)

echo "Clustering .fdist files"

for cin C*
do

if [-d $c]; then
FCluster -in ${c}/${c}.fdist -out ${c}/${c}_X > ${c}/${c}.fout
rm ${c}/${c}.fdist
fi
done

(cluster them...)

echo "Running PyroNoise"
for dir in C*
do

if [-d $dir] ; then

mpirun -np $nodes PyroNoise -din ${dir}/${dir}.dat -out

${dir}/${dir}_s60_c01 -lin ${dir}/${dir}_X.list -s 60.0 -c 0.01 >
${dir}/${dir}_s60_cO1.pout

fi
done

(denoise them to get sequences)

cat C*/C*_s60_c01_cd.fa > All_s60_c01_cd.fa
cat C*/C*_s60_cO1l.mapping > All_s60_cO1.mapping

Truncate.pl 220 < All_s60_c01_cd.fa > All_s60_c01_T220.fa

(in this case we can cat them together and do a single sequence noise
removal step but in general we may first run SeqNoise in the separate
directories before bringing them together for a final noise removal step)

echo "Running SeqDist"
mpirun -np $nodes SeqDist -in All_s60_c01_T220.fa >
All_s60_c01_T220.seqdist

FCluster -in All_s60_c01_T220.seqdist -out All_s60_c01_T220_S >
All s60 _c01_T220.fcout

rm All_s60_c01_T220.seqdist

echo "Running SeqNoise"

mpirun -np $nodes SeqNoise -din All_s60_c01_T220.fa -lin

All s60 _c01_T220 S.list -out All_s60_c01_T220 _s30 c08 -s 30.0 -c 0.08 -min
All_s60_c01.mapping > All_s60_c01_T220_s30_c08.snout

(Finally we remove PCR error from our sequences)

