Actual source code: umfpack.c

  1: #define PETSCMAT_DLL

  3: /* 
  4:    Provides an interface to the UMFPACKv5.1 sparse solver

  6:    When build with PETSC_USE_64BIT_INDICES this will use UF_Long as the 
  7:    integer type in UMFPACK, otherwise it will use int. This means
  8:    all integers in this file as simply declared as PetscInt. Also it means
  9:    that UMFPACK UL_Long version MUST be built with 64 bit integers when used.

 11: */
 12:  #include ../src/mat/impls/aij/seq/aij.h

 14: #if defined(PETSC_USE_64BIT_INDICES)
 15: #if defined(PETSC_USE_COMPLEX)
 16: #define umfpack_UMF_free_symbolic   umfpack_zl_free_symbolic
 17: #define umfpack_UMF_free_numeric    umfpack_zl_free_numeric
 18: #define umfpack_UMF_wsolve          umfpack_zl_wsolve
 19: #define umfpack_UMF_numeric         umfpack_zl_numeric
 20: #define umfpack_UMF_report_numeric  umfpack_zl_report_numeric
 21: #define umfpack_UMF_report_control  umfpack_zl_report_control
 22: #define umfpack_UMF_report_status   umfpack_zl_report_status
 23: #define umfpack_UMF_report_info     umfpack_zl_report_info
 24: #define umfpack_UMF_report_symbolic umfpack_zl_report_symbolic
 25: #define umfpack_UMF_qsymbolic       umfpack_zl_qsymbolic
 26: #define umfpack_UMF_symbolic        umfpack_zl_symbolic
 27: #define umfpack_UMF_defaults        umfpack_zl_defaults

 29: #else
 30: #define umfpack_UMF_free_symbolic   umfpack_dl_free_symbolic
 31: #define umfpack_UMF_free_numeric    umfpack_dl_free_numeric
 32: #define umfpack_UMF_wsolve          umfpack_dl_wsolve
 33: #define umfpack_UMF_numeric         umfpack_dl_numeric
 34: #define umfpack_UMF_report_numeric  umfpack_dl_report_numeric
 35: #define umfpack_UMF_report_control  umfpack_dl_report_control
 36: #define umfpack_UMF_report_status   umfpack_dl_report_status
 37: #define umfpack_UMF_report_info     umfpack_dl_report_info
 38: #define umfpack_UMF_report_symbolic umfpack_dl_report_symbolic
 39: #define umfpack_UMF_qsymbolic       umfpack_dl_qsymbolic
 40: #define umfpack_UMF_symbolic        umfpack_dl_symbolic
 41: #define umfpack_UMF_defaults        umfpack_dl_defaults
 42: #endif

 44: #else
 45: #if defined(PETSC_USE_COMPLEX)
 46: #define umfpack_UMF_free_symbolic   umfpack_zi_free_symbolic
 47: #define umfpack_UMF_free_numeric    umfpack_zi_free_numeric
 48: #define umfpack_UMF_wsolve          umfpack_zi_wsolve
 49: #define umfpack_UMF_numeric         umfpack_zi_numeric
 50: #define umfpack_UMF_report_numeric  umfpack_zi_report_numeric
 51: #define umfpack_UMF_report_control  umfpack_zi_report_control
 52: #define umfpack_UMF_report_status   umfpack_zi_report_status
 53: #define umfpack_UMF_report_info     umfpack_zi_report_info
 54: #define umfpack_UMF_report_symbolic umfpack_zi_report_symbolic
 55: #define umfpack_UMF_qsymbolic       umfpack_zi_qsymbolic
 56: #define umfpack_UMF_symbolic        umfpack_zi_symbolic
 57: #define umfpack_UMF_defaults        umfpack_zi_defaults

 59: #else
 60: #define umfpack_UMF_free_symbolic   umfpack_di_free_symbolic
 61: #define umfpack_UMF_free_numeric    umfpack_di_free_numeric
 62: #define umfpack_UMF_wsolve          umfpack_di_wsolve
 63: #define umfpack_UMF_numeric         umfpack_di_numeric
 64: #define umfpack_UMF_report_numeric  umfpack_di_report_numeric
 65: #define umfpack_UMF_report_control  umfpack_di_report_control
 66: #define umfpack_UMF_report_status   umfpack_di_report_status
 67: #define umfpack_UMF_report_info     umfpack_di_report_info
 68: #define umfpack_UMF_report_symbolic umfpack_di_report_symbolic
 69: #define umfpack_UMF_qsymbolic       umfpack_di_qsymbolic
 70: #define umfpack_UMF_symbolic        umfpack_di_symbolic
 71: #define umfpack_UMF_defaults        umfpack_di_defaults
 72: #endif
 73: #endif


 76: #define UF_long long long
 77: #define UF_long_max LONG_LONG_MAX
 78: #define UF_long_id "%lld"

 81: #include "umfpack.h"

 84: typedef struct {
 85:   void         *Symbolic, *Numeric;
 86:   double       Info[UMFPACK_INFO], Control[UMFPACK_CONTROL],*W;
 87:   PetscInt      *Wi,*ai,*aj,*perm_c;
 88:   PetscScalar  *av;
 89:   MatStructure flg;
 90:   PetscTruth   PetscMatOdering;

 92:   /* Flag to clean up UMFPACK objects during Destroy */
 93:   PetscTruth CleanUpUMFPACK;
 94: } Mat_UMFPACK;

 98: PetscErrorCode MatDestroy_UMFPACK(Mat A)
 99: {
101:   Mat_UMFPACK    *lu=(Mat_UMFPACK*)A->spptr;

104:   if (lu->CleanUpUMFPACK) {
105:     umfpack_UMF_free_symbolic(&lu->Symbolic);
106:     umfpack_UMF_free_numeric(&lu->Numeric);
107:     PetscFree(lu->Wi);
108:     PetscFree(lu->W);
109:     if (lu->PetscMatOdering) {
110:       PetscFree(lu->perm_c);
111:     }
112:   }
113:   MatDestroy_SeqAIJ(A);
114:   return(0);
115: }

119: PetscErrorCode MatSolve_UMFPACK(Mat A,Vec b,Vec x)
120: {
121:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)A->spptr;
122:   PetscScalar    *av=lu->av,*ba,*xa;
124:   PetscInt       *ai=lu->ai,*aj=lu->aj,status;
125: 
127:   /* solve Ax = b by umfpack_*_wsolve */
128:   /* ----------------------------------*/
129:   VecConjugate(b);

131:   VecGetArray(b,&ba);
132:   VecGetArray(x,&xa);
133: #if defined(PETSC_USE_COMPLEX)
134:   status = umfpack_UMF_wsolve(UMFPACK_At,ai,aj,(PetscReal*)av,NULL,(PetscReal*)xa,NULL,(PetscReal*)ba,NULL,
135:                               lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
136: #else  
137:   status = umfpack_UMF_wsolve(UMFPACK_At,ai,aj,av,xa,ba,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
138: #endif
139:   umfpack_UMF_report_info(lu->Control, lu->Info);
140:   if (status < 0){
141:     umfpack_UMF_report_status(lu->Control, status);
142:     SETERRQ(PETSC_ERR_LIB,"umfpack_UMF_wsolve failed");
143:   }

145:   VecRestoreArray(b,&ba);
146:   VecRestoreArray(x,&xa);

148:   VecConjugate(b);
149:   VecConjugate(x);
150:   return(0);
151: }

155: PetscErrorCode MatLUFactorNumeric_UMFPACK(Mat F,Mat A,const MatFactorInfo *info)
156: {
157:   Mat_UMFPACK *lu=(Mat_UMFPACK*)(F)->spptr;
159:   PetscInt     *ai=lu->ai,*aj=lu->aj,m=A->rmap->n,status;
160:   PetscScalar *av=lu->av;

163:   /* numeric factorization of A' */
164:   /* ----------------------------*/

166:   if (lu->flg == SAME_NONZERO_PATTERN && lu->Numeric){
167:     umfpack_UMF_free_numeric(&lu->Numeric);
168:   }
169: #if defined(PETSC_USE_COMPLEX)
170:   status = umfpack_UMF_numeric(ai,aj,(double*)av,NULL,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
171: #else
172:   status = umfpack_UMF_numeric(ai,aj,av,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
173: #endif
174:   if (status < 0) {
175:     umfpack_UMF_report_status(lu->Control, status);
176:     SETERRQ(PETSC_ERR_LIB,"umfpack_UMF_numeric failed");
177:   }
178:   /* report numeric factorization of A' when Control[PRL] > 3 */
179:   (void) umfpack_UMF_report_numeric(lu->Numeric, lu->Control);

181:   if (lu->flg == DIFFERENT_NONZERO_PATTERN){  /* first numeric factorization */
182:     /* allocate working space to be used by Solve */
183:     PetscMalloc(m * sizeof(PetscInt), &lu->Wi);
184:     PetscMalloc(5*m * sizeof(PetscScalar), &lu->W);
185:   }

187:   lu->flg = SAME_NONZERO_PATTERN;
188:   lu->CleanUpUMFPACK = PETSC_TRUE;
189:   (F)->ops->solve            = MatSolve_UMFPACK;
190:   return(0);
191: }

193: /*
194:    Note the r permutation is ignored
195: */
198: PetscErrorCode MatLUFactorSymbolic_UMFPACK(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
199: {
200:   Mat_SeqAIJ     *mat=(Mat_SeqAIJ*)A->data;
201:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)(F->spptr);
203:   PetscInt       i,m=A->rmap->n,n=A->cmap->n;
204:   const PetscInt *ra;
205:   PetscInt        status;
206:   PetscScalar    *av=mat->a;
207: 
209:   if (lu->PetscMatOdering) {
210:     ISGetIndices(r,&ra);
211:     PetscMalloc(m*sizeof(PetscInt),&lu->perm_c);
212:     /* we cannot simply memcpy on 64 bit archs */
213:     for(i = 0; i < m; i++) lu->perm_c[i] = ra[i];
214:     ISRestoreIndices(r,&ra);
215:   }

217:   lu->ai = mat->i;
218:   lu->aj = mat->j;

220:   /* print the control parameters */
221:   if(lu->Control[UMFPACK_PRL] > 1) umfpack_UMF_report_control(lu->Control);

223:   /* symbolic factorization of A' */
224:   /* ---------------------------------------------------------------------- */
225:   if (lu->PetscMatOdering) { /* use Petsc row ordering */
226: #if !defined(PETSC_USE_COMPLEX)
227:     status = umfpack_UMF_qsymbolic(n,m,lu->ai,lu->aj,av,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
228: #else
229:     status = umfpack_UMF_qsymbolic(n,m,lu->ai,lu->aj,NULL,NULL,
230:                                    lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
231: #endif
232:   } else { /* use Umfpack col ordering */
233: #if !defined(PETSC_USE_COMPLEX)
234:     status = umfpack_UMF_symbolic(n,m,lu->ai,lu->aj,av,&lu->Symbolic,lu->Control,lu->Info);
235: #else
236:     status = umfpack_UMF_symbolic(n,m,lu->ai,lu->aj,NULL,NULL,&lu->Symbolic,lu->Control,lu->Info);
237: #endif
238:   }
239:   if (status < 0){
240:     umfpack_UMF_report_info(lu->Control, lu->Info);
241:     umfpack_UMF_report_status(lu->Control, status);
242:     SETERRQ(PETSC_ERR_LIB,"umfpack_UMF_symbolic failed");
243:   }
244:   /* report sumbolic factorization of A' when Control[PRL] > 3 */
245:   (void) umfpack_UMF_report_symbolic(lu->Symbolic, lu->Control);

247:   lu->flg = DIFFERENT_NONZERO_PATTERN;
248:   lu->av  = av;
249:   lu->CleanUpUMFPACK = PETSC_TRUE;
250:   (F)->ops->lufactornumeric  = MatLUFactorNumeric_UMFPACK;
251:   return(0);
252: }

256: PetscErrorCode MatFactorInfo_UMFPACK(Mat A,PetscViewer viewer)
257: {
258:   Mat_UMFPACK    *lu= (Mat_UMFPACK*)A->spptr;

262:   /* check if matrix is UMFPACK type */
263:   if (A->ops->solve != MatSolve_UMFPACK) return(0);

265:   PetscViewerASCIIPrintf(viewer,"UMFPACK run parameters:\n");
266:   /* Control parameters used by reporting routiones */
267:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PRL]: %g\n",lu->Control[UMFPACK_PRL]);

269:   /* Control parameters used by symbolic factorization */
270:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_STRATEGY]: %g\n",lu->Control[UMFPACK_STRATEGY]);
271:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_COL]: %g\n",lu->Control[UMFPACK_DENSE_COL]);
272:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_ROW]: %g\n",lu->Control[UMFPACK_DENSE_ROW]);
273:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AMD_DENSE]: %g\n",lu->Control[UMFPACK_AMD_DENSE]);
274:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_BLOCK_SIZE]: %g\n",lu->Control[UMFPACK_BLOCK_SIZE]);
275:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_2BY2_TOLERANCE]: %g\n",lu->Control[UMFPACK_2BY2_TOLERANCE]);
276:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_FIXQ]: %g\n",lu->Control[UMFPACK_FIXQ]);
277:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AGGRESSIVE]: %g\n",lu->Control[UMFPACK_AGGRESSIVE]);

279:   /* Control parameters used by numeric factorization */
280:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_PIVOT_TOLERANCE]);
281:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SYM_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE]);
282:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SCALE]: %g\n",lu->Control[UMFPACK_SCALE]);
283:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_ALLOC_INIT]: %g\n",lu->Control[UMFPACK_ALLOC_INIT]);
284:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DROPTOL]: %g\n",lu->Control[UMFPACK_DROPTOL]);

286:   /* Control parameters used by solve */
287:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_IRSTEP]: %g\n",lu->Control[UMFPACK_IRSTEP]);

289:   /* mat ordering */
290:   if(!lu->PetscMatOdering) PetscViewerASCIIPrintf(viewer,"  UMFPACK default matrix ordering is used (not the PETSc matrix ordering) \n");

292:   return(0);
293: }

297: PetscErrorCode MatView_UMFPACK(Mat A,PetscViewer viewer)
298: {
299:   PetscErrorCode    ierr;
300:   PetscTruth        iascii;
301:   PetscViewerFormat format;

304:   MatView_SeqAIJ(A,viewer);

306:   PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_ASCII,&iascii);
307:   if (iascii) {
308:     PetscViewerGetFormat(viewer,&format);
309:     if (format == PETSC_VIEWER_ASCII_INFO) {
310:       MatFactorInfo_UMFPACK(A,viewer);
311:     }
312:   }
313:   return(0);
314: }

319: PetscErrorCode MatFactorGetSolverPackage_seqaij_umfpack(Mat A,const MatSolverPackage *type)
320: {
322:   *type = MAT_SOLVER_UMFPACK;
323:   return(0);
324: }
326: 

328: /*MC
329:   MAT_SOLVER_UMFPACK = "umfpack" - A matrix type providing direct solvers (LU) for sequential matrices 
330:   via the external package UMFPACK.

332:   config/configure.py --download-umfpack to install PETSc to use UMFPACK

334:   Consult UMFPACK documentation for more information about the Control parameters
335:   which correspond to the options database keys below.

337:   Options Database Keys:
338: + -mat_umfpack_prl - UMFPACK print level: Control[UMFPACK_PRL]
339: . -mat_umfpack_strategy <AUTO> (choose one of) AUTO UNSYMMETRIC SYMMETRIC 2BY2
340: . -mat_umfpack_dense_col <alpha_c> - UMFPACK dense column threshold: Control[UMFPACK_DENSE_COL]
341: . -mat_umfpack_dense_row <0.2>: Control[UMFPACK_DENSE_ROW] 
342: . -mat_umfpack_amd_dense <10>: Control[UMFPACK_AMD_DENSE] 
343: . -mat_umfpack_block_size <bs> - UMFPACK block size for BLAS-Level 3 calls: Control[UMFPACK_BLOCK_SIZE]
344: . -mat_umfpack_2by2_tolerance <0.01>: Control[UMFPACK_2BY2_TOLERANCE] 
345: . -mat_umfpack_fixq <0>: Control[UMFPACK_FIXQ] 
346: . -mat_umfpack_aggressive <1>: Control[UMFPACK_AGGRESSIVE] 
347: . -mat_umfpack_pivot_tolerance <delta> - UMFPACK partial pivot tolerance: Control[UMFPACK_PIVOT_TOLERANCE]
348: .  -mat_umfpack_sym_pivot_tolerance <0.001>: Control[UMFPACK_SYM_PIVOT_TOLERANCE] 
349: .  -mat_umfpack_scale <NONE> (choose one of) NONE SUM MAX
350: . -mat_umfpack_alloc_init <delta> - UMFPACK factorized matrix allocation modifier: Control[UMFPACK_ALLOC_INIT]
351: .  -mat_umfpack_droptol <0>: Control[UMFPACK_DROPTOL] 
352: - -mat_umfpack_irstep <maxit> - UMFPACK maximum number of iterative refinement steps: Control[UMFPACK_IRSTEP]

354:    Level: beginner

356: .seealso: PCLU, MAT_SOLVER_SUPERLU, MAT_SOLVER_MUMPS, MAT_SOLVER_SPOOLES, PCFactorSetMatSolverPackage(), MatSolverPackage
357: M*/
361: PetscErrorCode MatGetFactor_seqaij_umfpack(Mat A,MatFactorType ftype,Mat *F)
362: {
363:   Mat            B;
364:   Mat_UMFPACK    *lu;
366:   PetscInt       m=A->rmap->n,n=A->cmap->n,idx;

368:   const char     *strategy[]={"AUTO","UNSYMMETRIC","SYMMETRIC","2BY2"},
369:                  *scale[]={"NONE","SUM","MAX"};
370:   PetscTruth     flg;
371: 
373:   /* Create the factorization matrix F */
374:   MatCreate(((PetscObject)A)->comm,&B);
375:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
376:   MatSetType(B,((PetscObject)A)->type_name);
377:   MatSeqAIJSetPreallocation(B,0,PETSC_NULL);
378:   PetscNewLog(B,Mat_UMFPACK,&lu);
379:   B->spptr                 = lu;
380:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_UMFPACK;
381:   B->ops->destroy          = MatDestroy_UMFPACK;
382:   B->ops->view             = MatView_UMFPACK;
383:   PetscObjectComposeFunctionDynamic((PetscObject)B,"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_seqaij_umfpack",MatFactorGetSolverPackage_seqaij_umfpack);
384:   B->factor                = MAT_FACTOR_LU;
385:   B->assembled             = PETSC_TRUE;  /* required by -ksp_view */
386:   B->preallocated          = PETSC_TRUE;
387: 
388:   /* initializations */
389:   /* ------------------------------------------------*/
390:   /* get the default control parameters */
391:   umfpack_UMF_defaults(lu->Control);
392:   lu->perm_c = PETSC_NULL;  /* use defaul UMFPACK col permutation */
393:   lu->Control[UMFPACK_IRSTEP] = 0; /* max num of iterative refinement steps to attempt */

395:   PetscOptionsBegin(((PetscObject)A)->comm,((PetscObject)A)->prefix,"UMFPACK Options","Mat");
396:   /* Control parameters used by reporting routiones */
397:   PetscOptionsReal("-mat_umfpack_prl","Control[UMFPACK_PRL]","None",lu->Control[UMFPACK_PRL],&lu->Control[UMFPACK_PRL],PETSC_NULL);

399:   /* Control parameters for symbolic factorization */
400:   PetscOptionsEList("-mat_umfpack_strategy","ordering and pivoting strategy","None",strategy,4,strategy[0],&idx,&flg);
401:   if (flg) {
402:     switch (idx){
403:     case 0: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO; break;
404:     case 1: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC; break;
405:     case 2: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC; break;
406:     case 3: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_2BY2; break;
407:     }
408:   }
409:   PetscOptionsReal("-mat_umfpack_dense_col","Control[UMFPACK_DENSE_COL]","None",lu->Control[UMFPACK_DENSE_COL],&lu->Control[UMFPACK_DENSE_COL],PETSC_NULL);
410:   PetscOptionsReal("-mat_umfpack_dense_row","Control[UMFPACK_DENSE_ROW]","None",lu->Control[UMFPACK_DENSE_ROW],&lu->Control[UMFPACK_DENSE_ROW],PETSC_NULL);
411:   PetscOptionsReal("-mat_umfpack_amd_dense","Control[UMFPACK_AMD_DENSE]","None",lu->Control[UMFPACK_AMD_DENSE],&lu->Control[UMFPACK_AMD_DENSE],PETSC_NULL);
412:   PetscOptionsReal("-mat_umfpack_block_size","Control[UMFPACK_BLOCK_SIZE]","None",lu->Control[UMFPACK_BLOCK_SIZE],&lu->Control[UMFPACK_BLOCK_SIZE],PETSC_NULL);
413:   PetscOptionsReal("-mat_umfpack_2by2_tolerance","Control[UMFPACK_2BY2_TOLERANCE]","None",lu->Control[UMFPACK_2BY2_TOLERANCE],&lu->Control[UMFPACK_2BY2_TOLERANCE],PETSC_NULL);
414:   PetscOptionsReal("-mat_umfpack_fixq","Control[UMFPACK_FIXQ]","None",lu->Control[UMFPACK_FIXQ],&lu->Control[UMFPACK_FIXQ],PETSC_NULL);
415:   PetscOptionsReal("-mat_umfpack_aggressive","Control[UMFPACK_AGGRESSIVE]","None",lu->Control[UMFPACK_AGGRESSIVE],&lu->Control[UMFPACK_AGGRESSIVE],PETSC_NULL);

417:   /* Control parameters used by numeric factorization */
418:   PetscOptionsReal("-mat_umfpack_pivot_tolerance","Control[UMFPACK_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_PIVOT_TOLERANCE],&lu->Control[UMFPACK_PIVOT_TOLERANCE],PETSC_NULL);
419:   PetscOptionsReal("-mat_umfpack_sym_pivot_tolerance","Control[UMFPACK_SYM_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],&lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],PETSC_NULL);
420:   PetscOptionsEList("-mat_umfpack_scale","Control[UMFPACK_SCALE]","None",scale,3,scale[0],&idx,&flg);
421:   if (flg) {
422:     switch (idx){
423:     case 0: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_NONE; break;
424:     case 1: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_SUM; break;
425:     case 2: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_MAX; break;
426:     }
427:   }
428:   PetscOptionsReal("-mat_umfpack_alloc_init","Control[UMFPACK_ALLOC_INIT]","None",lu->Control[UMFPACK_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],PETSC_NULL);
429:   PetscOptionsReal("-mat_umfpack_front_alloc_init","Control[UMFPACK_FRONT_ALLOC_INIT]","None",lu->Control[UMFPACK_FRONT_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],PETSC_NULL);
430:   PetscOptionsReal("-mat_umfpack_droptol","Control[UMFPACK_DROPTOL]","None",lu->Control[UMFPACK_DROPTOL],&lu->Control[UMFPACK_DROPTOL],PETSC_NULL);

432:   /* Control parameters used by solve */
433:   PetscOptionsReal("-mat_umfpack_irstep","Control[UMFPACK_IRSTEP]","None",lu->Control[UMFPACK_IRSTEP],&lu->Control[UMFPACK_IRSTEP],PETSC_NULL);
434: 
435:   /* use Petsc mat ordering (note: size is for the transpose, and PETSc r = Umfpack perm_c) */
436:   PetscOptionsHasName(PETSC_NULL,"-pc_factor_mat_ordering_type",&lu->PetscMatOdering);
437:   PetscOptionsEnd();
438:   *F = B;
439:   return(0);
440: }