Actual source code: sorder.c
1: #define PETSCMAT_DLL
3: /*
4: Provides the code that allows PETSc users to register their own
5: sequential matrix Ordering routines.
6: */
7: #include private/matimpl.h
8: #include petscmat.h
10: PetscFList MatOrderingList = 0;
11: PetscTruth MatOrderingRegisterAllCalled = PETSC_FALSE;
13: EXTERN PetscErrorCode MatOrdering_Flow_SeqAIJ(Mat,const MatOrderingType,IS *,IS *);
17: PetscErrorCode MatOrdering_Flow(Mat mat,const MatOrderingType type,IS *irow,IS *icol)
18: {
20: SETERRQ(PETSC_ERR_SUP,"Cannot do default flow ordering for matrix type");
21: #if !defined(PETSC_USE_DEBUG)
22: return(0);
23: #endif
24: }
29: PetscErrorCode MatOrdering_Natural(Mat mat,const MatOrderingType type,IS *irow,IS *icol)
30: {
32: PetscInt n,i,*ii;
33: PetscTruth done;
34: MPI_Comm comm;
37: PetscObjectGetComm((PetscObject)mat,&comm);
38: MatGetRowIJ(mat,0,PETSC_FALSE,PETSC_TRUE,&n,PETSC_NULL,PETSC_NULL,&done);
39: MatRestoreRowIJ(mat,0,PETSC_FALSE,PETSC_TRUE,&n,PETSC_NULL,PETSC_NULL,&done);
40: if (done) { /* matrix may be "compressed" in symbolic factorization, due to i-nodes or block storage */
41: /*
42: We actually create general index sets because this avoids mallocs to
43: to obtain the indices in the MatSolve() routines.
44: ISCreateStride(PETSC_COMM_SELF,n,0,1,irow);
45: ISCreateStride(PETSC_COMM_SELF,n,0,1,icol);
46: */
47: PetscMalloc(n*sizeof(PetscInt),&ii);
48: for (i=0; i<n; i++) ii[i] = i;
49: ISCreateGeneral(PETSC_COMM_SELF,n,ii,irow);
50: ISCreateGeneral(PETSC_COMM_SELF,n,ii,icol);
51: PetscFree(ii);
52: } else {
53: PetscInt start,end;
55: MatGetOwnershipRange(mat,&start,&end);
56: ISCreateStride(comm,end-start,start,1,irow);
57: ISCreateStride(comm,end-start,start,1,icol);
58: }
59: ISSetIdentity(*irow);
60: ISSetIdentity(*icol);
61: return(0);
62: }
66: /*
67: Orders the rows (and columns) by the lengths of the rows.
68: This produces a symmetric Ordering but does not require a
69: matrix with symmetric non-zero structure.
70: */
73: PetscErrorCode MatOrdering_RowLength(Mat mat,const MatOrderingType type,IS *irow,IS *icol)
74: {
76: PetscInt n,*ia,*ja,*permr,*lens,i;
77: PetscTruth done;
80: MatGetRowIJ(mat,0,PETSC_FALSE,PETSC_TRUE,&n,&ia,&ja,&done);
81: if (!done) SETERRQ(PETSC_ERR_SUP,"Cannot get rows for matrix");
83: PetscMalloc(2*n*sizeof(PetscInt),&lens);
84: permr = lens + n;
85: for (i=0; i<n; i++) {
86: lens[i] = ia[i+1] - ia[i];
87: permr[i] = i;
88: }
89: MatRestoreRowIJ(mat,0,PETSC_FALSE,PETSC_TRUE,&n,&ia,&ja,&done);
91: PetscSortIntWithPermutation(n,lens,permr);
93: ISCreateGeneral(PETSC_COMM_SELF,n,permr,irow);
94: ISCreateGeneral(PETSC_COMM_SELF,n,permr,icol);
95: PetscFree(lens);
96: return(0);
97: }
102: PetscErrorCode MatOrderingRegister(const char sname[],const char path[],const char name[],PetscErrorCode (*function)(Mat,const MatOrderingType,IS*,IS*))
103: {
105: char fullname[PETSC_MAX_PATH_LEN];
108: PetscFListConcat(path,name,fullname);
109: PetscFListAdd(&MatOrderingList,sname,fullname,(void (*)(void))function);
110: return(0);
111: }
115: /*@
116: MatOrderingRegisterDestroy - Frees the list of ordering routines.
118: Not collective
120: Level: developer
121:
122: .keywords: matrix, register, destroy
124: .seealso: MatOrderingRegisterDynamic(), MatOrderingRegisterAll()
125: @*/
126: PetscErrorCode MatOrderingRegisterDestroy(void)
127: {
131: PetscFListDestroy(&MatOrderingList);
132: MatOrderingRegisterAllCalled = PETSC_FALSE;
133: return(0);
134: }
136: #include ../src/mat/impls/aij/mpi/mpiaij.h
139: /*@C
140: MatGetOrdering - Gets a reordering for a matrix to reduce fill or to
141: improve numerical stability of LU factorization.
143: Collective on Mat
145: Input Parameters:
146: + mat - the matrix
147: - type - type of reordering, one of the following:
148: $ MATORDERING_NATURAL - Natural
149: $ MATORDERING_ND - Nested Dissection
150: $ MATORDERING_1WD - One-way Dissection
151: $ MATORDERING_RCM - Reverse Cuthill-McKee
152: $ MATORDERING_QMD - Quotient Minimum Degree
154: Output Parameters:
155: + rperm - row permutation indices
156: - cperm - column permutation indices
159: Options Database Key:
160: . -mat_view_ordering_draw - plots matrix nonzero structure in new ordering
162: Level: intermediate
163:
164: Notes:
165: This DOES NOT actually reorder the matrix; it merely returns two index sets
166: that define a reordering. This is usually not used directly, rather use the
167: options PCFactorSetMatOrderingType()
169: The user can define additional orderings; see MatOrderingRegisterDynamic().
171: .keywords: matrix, set, ordering, factorization, direct, ILU, LU,
172: fill, reordering, natural, Nested Dissection,
173: One-way Dissection, Cholesky, Reverse Cuthill-McKee,
174: Quotient Minimum Degree
176: .seealso: MatOrderingRegisterDynamic(), PCFactorSetMatOrderingType()
177: @*/
178: PetscErrorCode MatGetOrdering(Mat mat,const MatOrderingType type,IS *rperm,IS *cperm)
179: {
181: PetscInt mmat,nmat,mis,m;
182: PetscErrorCode (*r)(Mat,const MatOrderingType,IS*,IS*);
183: PetscTruth flg,isseqdense,ismpidense,ismpiaij,ismpibaij,ismpisbaij;
189: if (!mat->assembled) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
190: if (mat->factor) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
192: /* this chunk of code is REALLY bad, should maybe get the ordering from the factor matrix,
193: then those that don't support orderings will handle their cases themselfs. */
194: PetscTypeCompare((PetscObject)mat,MATSEQDENSE,&isseqdense);
195: PetscTypeCompare((PetscObject)mat,MATMPIDENSE,&ismpidense);
196: PetscTypeCompare((PetscObject)mat,MATMPIAIJ,&ismpiaij);
197: PetscTypeCompare((PetscObject)mat,MATMPIBAIJ,&ismpibaij);
198: PetscTypeCompare((PetscObject)mat,MATMPISBAIJ,&ismpisbaij);
199: if (isseqdense || ismpidense || ismpiaij || ismpibaij || ismpisbaij) {
200: MatGetLocalSize(mat,&m,PETSC_NULL);
201: /*
202: Dense matrices only give natural ordering
203: */
204: ISCreateStride(PETSC_COMM_SELF,0,m,1,cperm);
205: ISCreateStride(PETSC_COMM_SELF,0,m,1,rperm);
206: ISSetIdentity(*cperm);
207: ISSetIdentity(*rperm);
208: ISSetPermutation(*rperm);
209: ISSetPermutation(*cperm);
210: return(0);
211: }
213: if (!mat->rmap->N) { /* matrix has zero rows */
214: ISCreateStride(PETSC_COMM_SELF,0,0,1,cperm);
215: ISCreateStride(PETSC_COMM_SELF,0,0,1,rperm);
216: ISSetIdentity(*cperm);
217: ISSetIdentity(*rperm);
218: ISSetPermutation(*rperm);
219: ISSetPermutation(*cperm);
220: return(0);
221: }
222:
223: MatGetLocalSize(mat,&mmat,&nmat);
224: if (mmat != nmat) SETERRQ2(PETSC_ERR_ARG_WRONG,"Must be square matrix, rows %D columns %D",mmat,nmat);
226: if (!MatOrderingRegisterAllCalled) {MatOrderingRegisterAll(PETSC_NULL);}
227: PetscFListFind(MatOrderingList,((PetscObject)mat)->comm,type,(void (**)(void)) &r);
228: if (!r) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Unknown or unregistered type: %s",type);}
230: PetscLogEventBegin(MAT_GetOrdering,mat,0,0,0);
231: (*r)(mat,type,rperm,cperm);
232: ISSetPermutation(*rperm);
233: ISSetPermutation(*cperm);
234: /* Adjust for inode (reduced matrix ordering) only if row permutation is smaller the matrix size */
235: ISGetLocalSize(*rperm,&mis);
236: if (mmat > mis) {MatInodeAdjustForInodes(mat,rperm,cperm);}
237: PetscLogEventEnd(MAT_GetOrdering,mat,0,0,0);
239: PetscOptionsHasName(((PetscObject)mat)->prefix,"-mat_view_ordering_draw",&flg);
240: if (flg) {
241: Mat tmat;
242: PetscOptionsHasName(((PetscObject)mat)->prefix,"-mat_view_contour",&flg);
243: if (flg) {
244: PetscViewerPushFormat(PETSC_VIEWER_DRAW_(((PetscObject)mat)->comm),PETSC_VIEWER_DRAW_CONTOUR);
245: }
246: MatPermute(mat,*rperm,*cperm,&tmat);
247: MatView(tmat,PETSC_VIEWER_DRAW_(((PetscObject)mat)->comm));
248: if (flg) {
249: PetscViewerPopFormat(PETSC_VIEWER_DRAW_(((PetscObject)mat)->comm));
250: }
251: MatDestroy(tmat);
252: }
254: return(0);
255: }
259: PetscErrorCode MatGetOrderingList(PetscFList *list)
260: {
262: *list = MatOrderingList;
263: return(0);
264: }